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THREE-DIMENSIONAL FINITE-ELEMENT ANALYSIS

OF FINITE-THICKNESS FRACTURE SPECIMENS

I. S. Raju* and J. C. Newman, Jr.

Langley Research Center

SUMMARY

The stress-intensity factors for most of the commonly used fracture specimens

(center-crack tension, single- and double-edge-crack tension, and compact), those that

have a through-the-thickness crack, were calculated using a three-dimensional finite-

element elastic stress analysis. Three-dimensional singularity elements were used

around the crack front. The stress-intensity factors along the crack front were evaluated

by using a force method, developed herein, that requires no prior assumption of either

plane stress or plane strain.

The calculated stress-intensity factors from the present analysis were compared

with those from the literature whenever possible and were generally found to be in good

agreement. The stress-intensity factors at the midplane for all specimens analyzed were

within 3 percent of the two-dimensional plane-strain values. The stress-intensity factors

at the specimen surfaces were considerably lower than at the midplanes. For the center-

crack tension specimens with large thickness-to-crack-length ratios, the stress-intensity

factor reached a maximum near the surface of the specimen. In all other specimens con-

sidered the maximum stress intensity occurred at the midplane.

INTRODUCTION

The stress-intensityfactor concept has been used to correlate fatigue crack-growth

rates and to determine fracture properties of engineering materials. For plane elastic

continua containing cracks, the stress-intensityfactors usually have been obtained from

two-dimensional analyses assuming either plane stress or plane strainand, therefore,

they are constant across the thickness (refs.1 and 2). For fracture specimens of finite

thickness, however, the stress-intensityfactors vary along the crack front. Inasmuch as

accurate stress-intensityfactors are needed to correlate fatigue crack-growth rates or

to determine fracture properties for finite-thicknessfracture specimens, analyses that

account for these stress-intensityvariations are needed.

*NRC-NASA Resident Research Associate.



For three-dimensional elastic continuawith cracks, the stress field near the crack

front is obtained by the solution of the Navier's equations of equilibrium subjected to

appropriate boundary conditions (ref. 3). Due to the complexity of the solution, however,

the stress fields around the crack front in three-dimensional continua are available for

only a few restricted classes of problems such as penny-shaped and elliptic cracks in

an infinite solid (ref. 3). For fracture specimens of finite thickness with through-the-

thickness cracks, some attempts (ref. 4) have been made to obtain the stress distribution

close to the crack front, but the solutions have been found to be intractable in closed form

(refs. 4 and 5). Even so, the form of the stress distribution near the crack front was

obtained. Hartranft and Sih (ref. 4) showed that the stresses ax, ay, az, and axy

had a square-root singularity at the crack front and the two transverse shear stresses

ay z and axz were finite throughout the plate.

In view of the difficulties in obtaining a closed-form analysis, several approximate

three-dimensional methods, such as direct potential (refs. 6 and 7) and finite elements

(refs. 8 to 10), have been used for the stress analysis of finite-thickness fracture speci-

mens containing through-the-thickness cracks. Each solution from these references,

however, was for a different specimen configuration, and the results cannot be directly

compared. Further, most investigators have used the crack-opening displacements and

the plane-strain assumption to evaluate the stress-intensity factor across the thickness.

This approach is justified only near the middle of the specimen where the plane-strain

conditions may exist, but not near the free surfaces of the specimen. Consequently, this

approach may lead to errors in the stress-intensity factor near the specimen surface.

The purpose of this paper is to present a three-dimensional finite-element elastic

stress analysis of the most commonly used fracture specimens (center-crack tension,

single- and double-edge-crack tension, and compact). A three-dimensional singularity

element in the shape of a pentahedron, similar to that developed by Tracey (ref. 8), was

used at the crack front; however, herein a nodal force method was developed and was used

to evaluate the mode I stress-intensity factors (ref. 1) along the crack front. This method,

in contrast to the crack-opening displacement method, requires no prior assumptions of

plane stress or plane strain. The accuracy of the nodal force method was verified by

conducting two-dimensional analyses on center-crack, single-edge-crack, and double-edge-

crack tension specimens.

In the present paper, the distributions of stress intensity (mode I) across the thick-

ness for all of the fracture specimens previously mentioned were obtained. The effects

of specimen thickness and specimen length on these distributions were investigated. These

results were compared with existing stress-intensity factor solutions from the literature

whenever possible.



SYMBOLS

Scalars:

b half-width of specimen

crack length defined in figure 1

E

F

Young' s modulus

stress-intensityboundary-correction factor

Fj

G

nodal force for node j

shear modulus

h half-length of specimen

i,j

K

indices

stre ss-intensity factor

Kap

P

apparent stre s s- intensity factor

applied load per unit thickness

r,6

R

polar coordinates with origin at crack tip

distance from crack tip to point on Y = 0

(see fig. 5)

and X = Constant plane

S applied stress

thickness of specimen

U_V_W displacement in x-, y-, and z-direction, respectively

x,y,z local Cartesian coordinates



X,Y,Z global Cartesian coordinates

_l,f12 distances from crack front (seefig. 4)

Poisson's ratio

_,_,[ orthogonal coordinates (parent system)

Matrices:

E.3

t ,CnD

strain-displacement matrix

elasticity matrix (e) = CD3 (e)

Jacobian matrix

stiffness matrix of an element

shape functions for an element

generalized displacements (_) ;(u vw)

constants

column matrix of nodal displacements for an element

e) strain matrix

a) stress matrix

ANALYSIS

Traditional finite-element analyses need large numbers of small elements around

the crack tip to delineate the stress field satisfactorily. Several attempts, in two-

dimensional analyses (refs. 11 to 13), have been made to develop a special element or

elements that account for the stress and strain singularity. These elements are either

based on the exact form of the stress field near the crack tip or include functions that,

simulate the square-root singularity of the stresses at the crack tip. Stress-intensity

factors obtained using such elements are substantially more accurate than those based on
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conventionalfinite elements (refs. 11 to 13); therefore, a three-dimensional singularity
element wasdevelopedherein for the analysis of finite-thickness specimenswith cracks.
The specimensanalyzedare shownin figure 1.

Three-Dimensional Analysis

Finite-element idealizations.- Three types of elements (isoparametric, _singularity,

and square-root) in combinations were used to model the finite-thickness specimens, and

a typical finite-element model is shown in figure 2. This model idealizes one-eighth of

the center-crack and double-edge-crack tension specimens and one-quarter of the single-

edge-crack tension and compact specimens shown in figure 1. Across the thickness,

various numbers of layers of elements with various thicknesses were used. Figure 2(a)

shows a typical four-layer model with equal thickness layers. Isoparametric hexahedron

(linear strain) elements were used everywhere except in the vicinity of the crack front.

Around the crack front the model had 8 "singularity elements" and 32 "square-root

elements" for each layer. The singularity elements had square-root terms in their

assumed displacement distributions and therefore produced a singular stress field at the

crack front. The singularity elements were located only at the crack front. The square-

root elements also had a square-root term in their assumed displacement distribution;

they were located near the crack front and around the singularity elements. The fine-

mesh model shown in figures 2(a) and 2(b) had 432 elements, 625 nodes, and 1875degrees

of freedom. The medium- and coarse-mesh models, figures 2(c) and 2(d), will be dis-

cussed later.

Isoparametric element.- Consicler an isoparametric hexahedron (ref. 14) with eight

nodes in a local Cartesian coordinate system (x,y,z) and a unit cube with eight nodes in

an orthogonal coordinate system (_,_7,_) (hereinafter termed as parent) as shown in fig-

ures 3(a) and 3(b), respectively. A unit cube (ref. 14) is used in the parent system for

simplicity. The mapping from the parent system to the local system is expressed as

(a) (1)

where LNJ is a row vector given by

L J: (2)



and

(_,)= (_,.o_,...,o_4)

If the constants (a) are expressed in terms of the coordinates of the eight nodes in

the local system, equation (1) can be rewritten as

(3)

8

YI= _ni Yi
i=1

I

z, zij

(4)

where

(5)

The terms _i' r/i, and _i are the coordinates of node i in the parent system, and the

terms xi, Yi' and z i are the coordinates of node i in the local system. Equation (4)

gives a one-to-one mapping of the parent system onto the local system.

The assumed displacement distribution for the isoparametric hexahedron element

(ref. 14) in figure 3(a) is

U

V

W

n i

nL

(_) (6)

where the shape functions n i (i=1,8) are given by equation (5) and (5), the nodal dis-

placement vector, is defined by

(6) = (ul,u2,...,u8,v,v2,...,Vs,Wx,W2,...,w8) (7)

This element is a linear strain element.



Singularity element.- The singularity element used herein exhibits a square-root

singularity in Ux, (_y, Crz, and axy , and the transverse shear stresses ay z and (rzx

are finite (ref. 4). This element is like that developed by Tracey (ref. 8). The formula-

tion of the singularity element is like that used for the isoparametric hexahedron element

except that nodes 1,5 and 2,6 of the hexahedron were coalesced to form the shape of a

pentahedron. The singularity element is located at the crack front as shown in fig-

ure 3(c). The z-axis of the local coordinate system was directed along the crack front.

The coalescence of the nodes at the crack front causes the constraints (El) = (E5) and

(u2) = (_6)" Due to these constraints the constants a3, a6, all , a14 , a19,

and ot22 of equation (1) vanished, and equation (4) was modified as

where

8

y Yt
i=l

z z i

t

n1= (i - })(i- [)

n_ = :(1 - _})_

' = (1 - _)_n 2

= - - :)

T 'r T T

n 5 = n 1 n 6 = n 2

v t

n 7 = _ n8 = ,_rl(1- _)

(B)

(9)

The displacement distributions for the singularity element were assumed as

V

W

_ni

n i

T

n i

C+) (IO)



The shape functions n i (i=1,8) in equation (10) were obtained from equations (9)

by replacing _ by _, so that the square-root functions for u and v would provide

singular stresses at the crack tip. The functions nl (i=1,8) for the transverse dis-

placement w are linear and are given by equations (9). These distributions ensure that

all stresses are singular at the crack front except the two transverse shear stresses ay z

and axz.

Square-root element.- Because the displacements near the crack tip have a square-

root distribution, several rings of elements around the singularity elements were

assigned square-root shape functions. The shape functions for these hexahedron elements

were obtainedby replacing _ with _-in equation (2). The constraints (Ul) = (u5)

and (u2) = (u6) were not applied to this element. The local coordinate system for

each square-root element was determined by its neighboring singularity element as

shown in figure 4(a). Further, to maintain the square-root character near the crack

front, these elements were mapped without translation in the radial direction (fig. 4(b)).

The coordinate transformation for this element is given by equation (4) where

n i - - 2 + 2+ 12- +

"h

- _i(_1 + f12)_(27Yli- 7}i-77+ 1) (2_ i - _i - _ + 1) (11)

Strains and stiffnessmatrix.- The strains in the elements, previously mentioned,

are obtained from the displacement distributionsas

The procedures for evaluating the strains and the strain energy are discussed in the liter-

ature (ref. 14) and are not repeated here.

The stiffness matrix for any element is obtained by

CK3 = fvol CB_T CD_ CB3 dx dy dz (13)

CD_ is the elasticity matrix which relates stresses to strains. Because thewhere

strain-displacement matrix CB3 is in terms of the parent coordinates, a change of vari-

able is needed. Thus,
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CK3 = JO _0 _0 CB]T CD]CB] det CJ3 d_ d_ d_ (14)

for isoparametric and singular elements, and

for the square-root elements. The Jacobian matrix EJ] in equations (14) and (15) was

obtained from equations (4), (8), and (11) for the isoparametric, singular, and square-

root elements, respectively.

For the pentahedron and hexahedron elements, the integrations in equations (14)

and (15) were too complex in closed form and, thus, numerical integration (Gaussian) was

used.

After the stiffness matrices of the elements in their local systems are obtained, the

stiffness matrices in a convenient global system (X,Y,Z) are obtained by elementary

coordinate transformations.

Stress-intensity factor.- The stress-intensity factor gives a measure of the magni-

tude of the stresses near the crack tip. In general, when the loading is complex, the

stress-intensity factor depends on the three basic modes of deformation. Here only

tension specimens were analyzed, however, and therefore only mode I deformations were

considered. The mode I stress-intensity factor K is usually defined as

K = S _/'_'E F (16)

where S is an applied stress and F is the boundary-correction factor which accounts

for the finiteness of the specimen.

The remainder of this section presents a force method, developed herein for

evaluating stress-intensity factors. In this method, neither plane stress nor plane strain

has to be assumed. The forces normal to the crack plane and ahead of the crack front

were used to evaluate the stress-intensity factor.

Consider a specimen idealized by several layers as shown in figure 5. The forces

normal to the Y = 0 plane along the junction line between layers i and i+l are

assumed to be contributed from the normal stresses acting over one-half of the layers on

either side of the junction line (shaded area ABCD in fig. 5). The normal stress ay at

any point in the Y = 0 plane is assumed to be given by



_ K + A_rl/2 + Ahr3/2 +. (17)
aY - 2_-

T

where r is the distance from the crack front. In general, K and A i are functions of
t

the coordinate Z. In the present analysis, however, K and A i were assumed to be

constant over the shaded region ABCD in figure 5. This assumption is justified when the

layers are thin.

The total force in the Y-direction acting over the shaded region ABCD (fig. 5) is

given by

Substituting equation (17) into equation (18) gives

Fy=I_I2_f'RI +AIR3/2+A2RS/2 +.. IIti+-2:i+l-I

(18)

(19)

where A i represents constants. Using only the first term on the right-hand side of

equation (19), K is replaced by the apparent stress-intensity factor Kap (ref. 15) and
is evaluated as

Fy- Kap

The force Fy was obtained from the finite-element analysis and was determined as

follows. Let nodes j,j+l,...,j+4 be the nodes lying on the junction line between

layers i and (i+l) and for 0 < r _---R; the finite-element analysis gives the nodal forces

in the Y-direction at all of these nodes. Let the forces be Fj,Fj+I,. .,Fj+ 4. Thus, the
total force over a distance R is

Fy= Fj +Fj+ 1 +Fj+ 2 +Fj+ 3 +F' j+4 (21)

where Fi+4, the nodal force at node j+4, is calculated using only the elements that are

connected to node j+4 and are inside the shaded region ABCD (see fig. 5). For various

values of R, the number of nodal forces contributing to Fy would also vary.

10



The total force Fy obtainedfrom the finite-element analysis is substituted into
equation(20), andthe apparent stress-intensity factor Kap is evaluated. The procedure
is repeatedfor various values of R. Equatingequations(19)and (20)gives

Kap = K + B1R + B2 R2 + . (22)

where Bi represents constants. From equation(22), a plotof Kap against R is
linear for small values of R and the intercept at R = 0, at the crack front, gives the

stress-intensity factor at a particular location along the crack front. The procedure is

repeated at various locations (Z) along the crack front.

Two-Dimensional Analysis

In order to establish the validity of both the singularity element and the calculation

of the stress-intensity factor using the force method, two-dimensional finite-element

analyses were conducted on center-crack tension (CCT), double-edge-crack tension

(DECT), and single-edge-crack tension (SECT) specimens (fig. 1). Only one layer of

three-dimensional elements was used in the two-dimensional analyses. To simulate

plane-strain conditions, the displacements in the Z-direction were prescribed to be

zero at all nodes.

Finite-element idealization.- Coarse, medium, and fine meshes were used to

idealize the two-dimensional specimens to study convergence of the solution. The fine-

mesh idealization (figs. 2(a) and 2(b)) had 108 elements, 250 nodes, and 750 degrees of

freedom. The medium-mesh idealization (figs. 2(a) and 2(c)) had 92 elements, 214 nodes,

and 642 degrees of freedom. The coarse-mesh idealization (figs. 2(a) and 2(d)) had

68 elements, 160 nodes, and 480 degrees of freedom. Figure 2 also shows the element

patterns in the crack-tip region for the three meshes.

Stress-intensity factor.- The stress-intensity factor in the two-dimensional analy-

sis was evaluated by the force method. As only one layer was used across the thickness,

equation (20) becomes

Fy = Kap _ t (23)

where t is the thickness of the specimen. The remainder of the analysis was identical

to the three-dimensional analysis; equations (21) and (22) were used to compute Fy and

to evaluate the stress-intensity factors.

11



RESULTS AND DISCUSSION

The stress-intensity factors for the specimens shown in figure 1 were calculated

herein using either a two- or a three-dimensional finite-element analysis. Two-

dimensional analyses were used to verify the force method for calculating the stress-

intensity factors. In the three-dimensional analyses, the effects of specimen thickness

and specimen length on the variation of stress intensity along the crack front were

studied. The stress-intensity factors from the present analysis were compared with

other solutions whenever possible (refs. 6 to 10).

Two-Dimensional Results

The stress-intensity factors obtained from the force method for two-dimensional

analysis are presented in table I for CCT, DECT, and SECT specimens. Each of the

three specimen types had a c/b ratio of 0.5. Stress-intensity factors from the litera-

ture are also given in table I.

Figure 6 shows the apparent stress-intensity factor for the CCT specimen obtained

by the force method plotted against the distance R/c for all three meshes. For the

fine mesh (triangular symbols) this figure shows a straight-line relationship between the

apparent stress-intensity factor Kap and the distance from the crack tip R except

for the Kap value closest to the crack tip, R = 0. The Kap value closest to the crack
tip was calculated from the force contributions from the singularity elements only. These

elements were stiffer than other elements and therefore attracted larger force. At larger

distances from the crack tip, however, the square-root elements adjusted the forces Fy

so that a straight-line relationship between Kap and R/c was maintained. If the

Kap value nearest the crack tip is neglected, the slope of the straight line of the fine
mesh is very nearly equal to the slope obtained from Newman's collocation results

(ref. 16) (circular symbols, fig. 6). The Kap value closest to the crack tip was there-
fore neglected in the present application of the force method.

The medium-mesh model (square symbols, fig. 6) gave a stress-intensity factor

closer to the collocation results (ref. 16) than either the coarse-mesh model (diamond

symbols) or the fine-mesh model (triangular symbols). All three meshes, however,

gave stress-intensity factors within 2.5 percent of the collocation results. Since the

slope of the straight line from the fine-mesh results is in good agreement with the

slope from Newman's collocation results, the fine-mesh model gave the same stress

distribution in the crack-tip region as the collocation results but the magnitude of the

stresses was slightly lower than that from the collocation results.

The stress-intensity factors obtained using the force method (table I) agree withfn

-1.4, -0.12, and -4.7 percent for the CCT, DECT, and SECT specimens, respectively,

compared with the generally accepted values given in references 1 and 16.
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In general, the force method gave stress-intensity factors which were in good

agreement with those from the literature. Because the fine-mesh model gave good

stress-intensity factors for all three specimens considered, this mesh was also used

in the three-diniensional analysis.

Three-Dimensional Results

Center-crack tension specimen.- In the following sections the effects of specimen

thickness and specimen length on stress-intensity variations across the thickness are

presented. These results are compared with existing stress-intensity factor solutions

from the literature whenever possible. Also, the stress-intensity variation in the

boundary layer (layer at the intersection of the crack and the free surface) is studied in

detail.

h
Thickness effect: A thin center-crack tension specimen (fig. l(a)) with _ = 0.5,

c_ = 0.5, and t = 0.5 was analyzed. This specimen configuration was selected because
b c
it was also analyzed by Atluri and Kathiresan (ref. 10), who used a singularity element

derived from a hybrid displacement model. The present finite-element model had four

nonuniform layers across the half thickness. The outer layers, near the surface, were

made an order of magnitude thinner than the inner layers. The layer thicknesses from

the midplane to the surface were 0.266t, 0.167t, 0.05t, and 0.017t. This four-layer model

was termed the nonuniform-layer model.

Stress-intensity factors obtained from the present analysis and those from refer-

ence 10 are compared in figure 7. The results agree well (within 5 percent) with each

other. The stress-intensity factors are nearly constant over most of the thickness but

are lower near the surface. The stress-intensity factor at the midplane is nearly equal

to the plane-strain value (ref. 17) shown by the dashed line.

A center-crack tension specimen thicker than that considered previously was also

h c = 0.5, and t = 3. In the present analysis of
analyzed. This specimen had _= 0.875, _

this specimen, the number of layers (equal thickness) across the thickness was systemat-

ically varied from two to five. Results based on layers of equal thickness were then com-

pared in figure 8 with results from the nonuniform-layer model. For layers of equal

thickness the nondimensional crack-opening displacements are presented in table II and

were found to be insensitive to the number of layers. Similarly, table HI and figure 8

show that the stress-intensity factors were insensitive to the number of layers and at the

midplane they were about 2 percent lower than the plane-strain value (dashed line). The

stress-intensityfactorshavea peak value near the surface (Z = o.4), but the lowest value

occurs at the surface.

13



Boundary-layer effect: Hartranft and Sih (ref. 18) proposed that the stress-intensity

factors in the interior of a specimen were nearly equal to the plane-strain value, but, in a

very thin "boundary layer" near the free surface, the stress-intensity factors "drop off"

rapidly and equal zero at the surface. To investigate the boundary-layer effect, the

nonuniform-layer model was used. The results obtained from the nonuniform-layer

model are shown in figure 8 (diamond symbols). These results show that the stress-

intensity is about 10 percent lower at the free surface than the previous results (two to

five equal-thickness layers). The stress intensity in the interior of the specimen was the

same for all models.

To study the boundary-layer effect further, the apparent stress-intensity factors

Kap obtained using the force method and the nonuniform-layer model are plotted against

R/c in figure 9 for various values of Z/t. As in the two-dimensional analysis, the

results from the three-dimensional analysis show the straight-line relationship (as pro-

posed by eq. (22)) for small values of R/c. For each value of Z/t, a straight line

was fitted (by the method of least squares) to the Kap results to evaluate the stress-

intensity factor. As previously discussed, the Kap value closest to the crack front

was neglected. As in the two-dimensional analysis the intercept of these lines at c_ = 0

gives the stress-intensity factor. The stress-intensity factors obtained at R = 0 fromc

figure 9 are given in table HI.

Z 0, 0.266, and 0.433 are nearly the same.The slopes of the straight lines for }- =

Z = 0.483 and 0.5 (the layers close to the surface) significantly differentHowever, for _-

slopes are observed, suggesting a highly localized boundary-layer effect. The results of

the present analysis showed that significantly different slopes of the straight line occurred

Z < 0.5, that is, in a layer of 0.017t near the surface. In reference 18,inaregion 0.483=<_-=
//

the boundary-layer thickness was estimated to be t/(4 + 1-6!t. This estimate corre-

sponds to a boundary-layer thickness of 0.02t for the CCT specimen with _ = 3. The
t

size of the boundary layer from the present analysis is in good agreement with the pre-

dictions from reference 18. For the two CCT specimens considered the boundary-layer

thicknesses were estimated using reference 18 and are shown in figures 7 and 8.

At the surface (Z = 0. 5) , the plot of Kap against R/c deviated from the straight-

line relationship (fig. 9). This behavior suggests that the singularity at the surface of the

specimen may be different from the classical square-root singularity. Folias (ref. 19)

has shown that the stresses close to the crack front are proportional to r and

i-2v
displacements close to the crack front are proportional to r_ Thus, the displace-

14



ments at the crack front for Poisson's ratio greater than 1/4 are singular. He proposed

that linear elastic theory may be inadequate to predict the actual behavior at the surface.

The literature contains no accepted mathematical proof to determine the order of the

singularity where the crack meets the surface.

The stress-intensity factors from the present results (shown in fig. 8) increased

f/'om the middle of the specimen to a peak near Z = 0.4 and dropped offmonotonically

rapidly in the boundary layer. This type of behavior was termed "peaking." To investi-

gate the peaking behavior in the stress-intensity variation across the thickness, four

( 4) h 0.875 andthickness-to-crack-length ratios t = 1, 2, 3, and were analyzed with _ =

c = 0.5. The nonuniform-layer model was used, and the results are shown in figure 10.
b
The peaking behavior was not observed for t = 1 but occurred for all other thickness-to-

c
crack-length ratios. The peaking behavior was most pronounced for the largest value

of t/c considered. The reasons for this peaking behavior are not understood at present.

Specimen-length effect: In the laboratory, specimen lengths are usually longer than

the length considered in previous examples; therefore, to investigate the effects of speci-

men length on stress-intensity distributions, the stress intensity was calculated by using

the nonuniform-layer model for a CCT specimen with h = 3 and t_c= 3. The stress-

intensity factors obtained are given in table IV. Figure 10 shows the distribution of

h h 3 (triangularstress-intensityfactors across the thickness for = 0.875 and for g =

symbols). As expected, the longer specimen had lower stress-intensityfactors than the

h 3 also showed the peaking behavior.
short specimen. The specimen with g =

Double-edge-crack tension specimen.- A double-edge-crack tension specimen as

h c 0.5, and t = 3 was analyzed. Again theshown in figure l(b) with = 0.875, _ =

nonuniform-layer model was used. Table V gives the stress-intensity factors and

table VI gives the nondimensional crack-opening displacements. Figure 11 shows the

variation of stress-intensity factor across the thickness (triangular symbols) from the

present analysis. The stress-intensity factors were nearly uniform for most of the spec-

imen thickness but, again, were lower at the surface. However, these results do not show

the peaking behavior that was observed in the CCT specimen for the same thickness-to-

crack-length ratio.

In order to investigate the peaking behavior in the DECT specimen, two specimens

with h= 3 and t = 3 or 9 were analyzed. The results in figure 11 (lower curves)c

showed that these specimens exhibited no peaking; however, peaking may occur in DECT

specimens provided the t/c ratio is large enough.

Single-edge-crack tension specimen.- Single-edge-crack tension specimens (SECT)

c = 1.0, and t = 3 were analyzed. Again theh = 1.75 and 6,as in figure l(c) with b
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nonuniform-layer model wasused in the analysis. Table VII gives the stress-intensity
factors across the thickness for the two specimenlengths. Figure 12showsthe varia-
tion of the stress-intensity factor across the thickness. As in the DECT configuration,
the stress-intensity factors are nearly uniform over most of the thickness and are lower
than the midplanevalue near the free surface. The stress-intensity factor at the middle
of the specimenwas within 1percent of the plane-strain value (dashedline) (ref. 1).
The stress-intensity factors were nearly the samefor the two specimenlengths.

Compact specimen.- The compact specimen (fig. l(d)) is much like the SECT speci-

men except that the loading is applied at the crack mouth. This specimen configuration

with _=h 1, _=c 1, and ct = 1 was also analyzed by Tracey (ref. 8). He used a singu-

larity element like that developed in this report but incorporating a much finer mesh

around the crack front. Reference 8 used two methods to evaluate the stress-intensity

factor: (a) a crack-opening displacement method (with plane-strain assumption) and

(b) a local stress method.

Table VIII gives the stress-intensity factors across thickness for the compact spec-

imen, and figure 13 compares these results with those from reference 8. As expected,

near the surface the present results do not agree with the results from reference 8 based

on the crack-opening displacement method because of the assumption of plane strain. The

present results agree very well, however, with the local stress-method results of refer-

ence 8, although the present analysis used only 4 elements across the thickness com-

pared with 15 elements used in reference 8. This close correlation indicates that the

force method yields reliable results.

In order to investigate the thickness effect, a compact specimen with the same con-

figuration as previously considered, but with a larger thickness ratio (t = 2), was also

analyzed. The same mesh was used except that the Z-coordinates were scaled up by a

factor of 2. The results for this case are presented in table VIII and figure 14. The

stress-intensity factor at the free surface was about 0.65 of the value at the midplane of

the specimen. Tracey (ref. 8) also analyzed this configuration and found that this ratio

was about 0.7 (triangular symbol). Tracey's results, however, were obtained using crack-

opening displacements with the plane-strain assumption. When he assumed a plane-stress

condition at the free surface, the ratio was 0.64 (square symbol), which agrees well with

the present results.

The present analysis showed that for a specimen with t. = 2 (fig. 14) the stress-c
intensity factor at the free surface was only about 4 percent lower than the correspond-

t
ing value for the specimen with _ = 1 (fig. 13). For both thicknesses, the stress-

intensity factors at the middle of. the plate were within 1 percent of the plane-strain

value (ref. 6).
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CONCLUDING REMARKS

The stress-intensity factors for most of the commonly used fracture specimens

(center-crack tension, single- and double-edge-crack tension, and compact) with through-

the-thickness cracks were calculated using a three-dimensional finite-element elastic

stress analysis. Three-dimensional singularity elements in the shape of pentahedrons

were used at the crack front. A force method which requires no prior assumption of

either plane stress or plane strain was developed and used to evaluate the stress-intensity

factors across the thickness for these specimens.

For all specimen types considered, the calculated stress-intensity factor at the

midplane of the specimen was within 3 percent of the plane-strain (two-dimensional)

value. The stress-intensity factors at the surface of the specimens were considerably

lower (10 to 35 percent) than the midplane values. The stress-intensity factors near the

surface of the specimens fell off rapidly in a small "boundary layer." The calculated

thickness of this boundary layer from the present analysis was in good agreement with

that proposed in the literature. The present results also indicated that the crack-tip

singularity at the surface of the specimen may be different from the classical square-

root singularity.

In the center-crack tension specimen the maximum stress-intensity factor near the

specimen surface was about 5 to 10 percent higher than the midplane value but at the

surface it was up to 10 percent lower than the midplane value. This "peaking" in the

stress-intensity factor near the surface was most pronounced for the largest thickness-

to-crack-length ratio considered (2 to 1). The peaking behavior was not observed for the

single-edge-crack, double-edge-crack, and compact specimens.

The specimen length had a strong influence on the magnitude of the stress-intensity

factor but had no appreciable effect on its distribution across the thickness. The shorter-

length specimens had higher stress-intensity factors than the longer-length specimens.

The stress-intensity factors from the present analyses were in good agreement

(5 percent) with the stress-intensity factors from the literature. The stress-intensity

factors obtained herein may be used to correlate fatigue crack-growth rates and to deter-

mine fracture properties of finite-thickness fracture specimens. The present three-

dimensional analysis shows that the plane-strain stress-intensity factors for the center-

crack tension and double-edge-crack tension specimens may be sufficient for correlating

fatigue-crack growth rates and fracture properties because of the small variations in the
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stress intensity across the thickness. For the single-edge-crack and compact specimens,

however, the plane-strain values may not be sufficient because of large variation in the

stress intensity across the thickness.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

February 9, 1977
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TABLE I.- COMPARISON OF STRESS-INTENSITY FACTORS

FROM TWO-DIMENSIONAL ANALYSES

Specimen

CCT

DECT

SECT

Coarse
mesh

(a)

Present results

1.160

1.125

2.680

Medium
mesh

%
1.174

1.154

2.702

Fine
mesh

(¢)

1.170

1.149

2.687

Re sults from
the literature

di.187

el.151

e2.820

a68 elements, 160 nodes, and 480 degrees of freedom.

b92 elements, 214 nodes, and 642 degrees of freedom.

c108 elements, 250 nodes, and 750 degrees of freedom.

dCollocation (ref. 16).

eConformal mapping (ref. 1).
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TABLE II.-NONDIMENSIONAL CRACK-OPENINGDISPLACEMENTS

FORCCT SPECIMENON Y = 0 AND X :, -c

Ih=0.875; c 0.5; t 1_g= c=3; v=

Ev/Sc
Distance

from 3 layers 4 layers 5 layers
crack tip,

r/c Z = 0 Z t
2

0.0132

.0264

.04

.08

.12

.16

.2

.4

.6

.8

1_0

2 layers

z =o z =t
2

0.395 0.433

.558 .612

.685 .754

.962 1.069

1.167 1.306

1.338 1.507

1.483 1.680

1.980 2.283

2.296 2.673

2.469 2.886

2.517 2.946

Z=0 Z= t
2

0.398 0.431

.562 .612

.690 .755

.968 1.076

1.173 1.320

1.345 1.527

1.490 1.704

1.989 2.322

2.307 2.719

2.480 2.935

2.529 2.995

Z=0 Z= t
2

0.399 0.429

.562 .610

.691 .755

.969 1.080

1.175 1.328

1.347 1.539

1.492 1.719

1.993 2.343

2.312 2.741

2.486 2.956

2.534 3.016

0.399

.563

.691

.970

1.176

1.348

1.494

1.995

2.318

2.488

2.537

0.427

.608

.754

1.083

1.334

I. 548

1.730

2. 356

2.753

2.968

3.027
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TABLE HI.- STRESS-INTENSITY BOUNDARY-CORRECTION FACTORS

ACROSS THICKNESS FOR CCT SPECIMEN

=0.875; g= 0.5; _= 3; u=

2 layers

z/t

0

.25

.5

F

(b)

1.394

1.430

1.474

3 layers

Z/t F

(b)

0 1.393

.166 1.409

.333 1.457

.5 1.480

4 layers

Z/t

0

.266

.433

.483

.5

Z/t F

(b)

0 1.394

.125 1.402

.25 1.429

.375 1.474

.5 1.477

4 layers
(a)

F

Co)

1.401

1.433

1.482

1.439

1.316

5 layers

Z/t F

(b)
0 1.394

.1 1.399

.2 1.416

.3 1.446

.4 1.486

.5 1.472

aLayers are of unequal thickness.

bF_ K

Very thin layers were used at the surface.
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TABLE IV.- STRESS-INTENSITY BOUNDARY-CORRECTION FACTORS

ACROSS THICKNESS FOR CCT SPECIMEN

=0.5; c = 3; v=

z/t

0

.266

.433

.483

.5

a F -

F

(a)

h h- = 0.875 - = 3
b b

1.401 1.197

1.433 1.216

1.482 1.243

1.439 1.203

1.316 1.102

K

s_z"

TABLE V.- STRESS-INTENSITY BOUNDARY-CORRECTION FACTORS

.cRos__.,c,__o,_o_c__,_c,_
C_:°5;' _}c = 3; v=

Z/t

F

(_).,

h
- = 0.875
b

0 1.496

.266 1.470

.433 1.399

.483 1.281

.5 1.138

aF = K

s_

h
--=3
b

1.213

1.204

1.173

1.099

.991
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_ No_ oN_LO_E_NOOISPLACEMEN_S

c0_t:o.875; _= c=3; v=

Distance
from

crack tip,
r/c

0.0132

.0264

.04

.08

.12

.16

.2

.4

.6

.8

1.0

Ev/Sc

Z=0 Z= t
2

0.432 0.372

.612 .532

.753 .662

1.065 .960

1.303 1.198

1.506 1.406

1.681 1.590

2.373 2.318

2.928 2.896

3.408 3.378

3.866 3.825
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TABLE VII.- STRESS-INTENSITYBOUNDARY-CORRECTIONFACTORS

ACROSSTHICKNESSFORSECTSPECIMEN
. .

=1; _-=3; v=

z/t

0

.266

.433

.483

.5

F

(a)

h 1.75
b

2.787

2.764

2.660

2.434

2.153

h
----6
b

2.776

2.757

2.662

2.441

2.161

TABLE Vm.- STRESS-INTENSITY BOUNDARY-CORRECTION FACTORS

ACROSS THICKNESS FOR COMPACT SPECIMEN

b 1; v = 0.3
C

=1; g=

Z/t

0

.266

.433

.483

.5

a F -

F

(a)

t t-=1 -=2
C C

7.967 7.958

7.756 7.701

7.158 6.963

6.342 6.053

5.361 5.167

K

p _/2b"
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Figure 1.- Fracture specimens.
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